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Abstract  The current study centers on two techniques: 
neural network (NN) and response surface methodology 
(RSM), applied to predict the final density (FD) of sintered 
aluminum preforms. In this work, the load, the aspect 
ratio and the initial preform density were taken as input 
parameters and the response (output) variable measured 
was FD. Prediction for the response variable FD was 
obtained with the help of empirical relation between the 
response and the input variables using RSM’s (RSM) 
Box–Behnken design of experimental technique and also 
through Neural Network (NN). Predicted values of the 
response by both the techniques, i.e., RSM and NN were 
compared with the experimental values and their closeness 
with the experimental values was determined. Moreover, 
it has been discovered that the aspect ratio has minimal 
impact on densification and that the FD of the preform rises 
with both the load applied and the initial preform density 
of the sintered preforms. The authors were able to predict 
the FD of sintered preforms of Al–TiB2 for different initial 

preform and aspect ratio conditions by using NN and RSM 
techniques.

Keywords  Neural network (NN) · Response surface 
methodology (RSM) · Sintered aluminum · Powder 
preforms · Cold axial forming

Abbreviations
Adeq precision	� Adequate precision
Adj. R2	� Adjusted R2

DF	� Degrees of freedom
FD	� Final density
Pred. R2	� Predicted R2

R2	� Coefficient of determination
S.D.	� Square root of the residual mean square
Cor. total	� Totals of all data adjusted for mean
C.V.	� Coefficient of variation
Prob. > F	� Percentage of the probability or time you 

would expect to obtain the specified F 
value

A	� First variable or factor examined—load 
(LD)

B	� Second factor or input variable 
investigated—aspect ratio (ASPR)

C	� Third factor or input variable 
investigated—initial preform density 
(IPD)

PRESS	� Expected sum of squares for residual 
error

1  Introduction

Understanding the densification behavior of sintered 
aluminum preforms during forming is very important in 
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achieving quality powder metallurgy (P/M) parts. For 
P/M materials, there is a well-established dependence of 
strength upon density [1]. The densification behavior of the 
P/M (Powder Metallurgy) product deviates significantly 
from conventional cast and wrought materials due to the 
presence of air gaps in the aluminum preforms. For instance, 
compared to typical materials, porous materials spread less 
in the transverse direction when squeezed. Additionally, 
during deformation, densification and cold working of the 
base metal both generate an increase in flow stress [2, 3]. 
However, the sintered preforms can be deformed again 
to a final size within reasonable dimensional tolerance 
to increase its density very close to fully dense materials 
[2]. Kuhn et al. [3] has reported that by using cylindrical 
specimens in uniaxial compression experiments, the basic 
mechanical reactions of porous metals—densification, 
plastic flow, and fracture—can be determined. A portion 
of the metal flows into the pores during the compressive 
deformation of the sintered powder metal preform, 
causing the bulk volume to decrease. As the metal fills the 
pores, simultaneously the preforms density increases [4]. 
Comprehending the distribution of the density during the 
compaction and understanding the behavior deformation 
of powder preforms throughout forming are crucial for 
producing high-quality Powder Metallurgy (P/M) parts. 
Uneven density distribution can lead to distortion in the 
final parts [2]. Abdul Rahman et al. [5] has looked into 
how the preform’s relative density affects the forming limit. 
Mamalis et al. [6, 7] has used the yield criterion to study the 
porosity and micro-flaws on materials that have undergone 
plastic deformation. In order to meet end-user demands, 
P/M component manufacturers are interested in forecasting 
the ultimate density of their products. It is exceedingly 
challenging to estimate the ultimate density before 
experimenting, though. In the industrial sector, modeling 
approaches are now being employed for process parameter 
prediction and optimization. Neural networks have been 
used to examine the deformation properties of sintered 
aluminum preforms. [8, 9]. Response surface technique 

has been used to evaluate the bead quality of submerged 
arc pipe welding [10]. However, not much work has been 
done to model the densification behavior of powders under 
compressive forces. Chandrasekar et al. [14] conducted a 
study on the dynamic effects of cold upsetting of sintered 
aluminum truncated conical preforms. The researchers 
employed DEFORM 3D software to simulate the process 
and utilized statistical techniques, including response 
surface method and design of experiments, to forecast and 
enhance the response. Md. Ahasan et al. [15] DEFORM 2D 
software, based on finite element analysis (FEA), has been 
utilized to forecast the distribution of density as well as 
determine the precise locations of maximum and minimum 
density zones. Through this analysis, the underlying damage 
mechanism responsible for the densification process has 
been identified, and the critical damage value has been 
successfully determined. Rao et al. [16] predicted values 
through TLBO and GRA approaches for wear characteristics 
of composites were notably influenced by changes in the 
WC volume percentage (5–25%). Enhanced wear tracks 

Fig. 1   NN topology with four 
layers of backpropagation

Fig. 2   The correlation between the error value and the epoch count
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and closely positioned grooves were observed on the worn 
surfaces of the composite pin with a higher volume fraction 
of WC particles. Gangadhara Rao Ponugoti et  al. [17] 
recorded the tribological property indicators, namely the 
wear rate and coefficient of friction and used as the basis 
for developing regression models. These models were then 
checked for adequacy using ANOVA and subsequently 
utilized for optimization purposes. To derive the values of 
the optimal control variables, fuzzy gray relational analysis 
(FGRA) was employed. The effectiveness of this multi-
response optimization approach, which aims to minimize 
both the wear rate and coefficient of friction simultaneously, 
was thoroughly analyzed and reported. Finally, the 
validation experimental results confirmed the derived 
optimal tribological conditions of the composites. Zhang 
et al. [18] simulated and predicted the fracture in sintered 
materials using the FEA method. They analyzed the density 
distribution, strain distribution, and stress distribution in 
preforms upset up to 50% height reduction. They were able 
to determine the formability limits for aluminum 601 AB 
alloy under various initial preform conditions and aspect 
ratio.

In this paper, the density attained by sintered Al–TiB2 
preforms when they were subjected to cold axial forming 
operation has been critically discussed. Axial compression 
tests were conducted on sintered Al–TiB2 of aspect ratios 
0.50, 0.75, and 1.00 and initial preform density values of 
0.85, 0.885, and 0.92. Using the Box–Behnken Design of 
Experiments (D.O.E) approach of RSM, a mathematical 
model has been built that incorporates the load, aspect ratio, 
and initial preforms density. The primary and secondary 
impacts of the process parameters on the density of the 
sintered Al–TiB2 powder metallurgy preforms within the 
scope of analysis were examined using ANOVA. Also, a 
four-layered back propagation Neural Network has been used 
to model the densification behavior of sintered Al–TiB2. In 
addition to the developed models, additional experiments 
have been conducted to verify their accuracy. The NN 
and RSM techniques were applied to predict the FD of 
the prefoms; the predicted results were very close to the 
experimental values and to find the behavior of sintered 
preforms.

2 � Experimental Work

This experiment utilized high-purity atomized aluminum 
powder. The powder was used to form compacts with several 
aspect ratios or height-to-diameter ratios; these first ratios 
were 0.50, 0.75, and 1.00. By using various compacting 
pressures on the aluminum powder in a universal testing 
machine, compacts with these initial aspect ratios were 
created, yielding initial compaction densities of 85%, 

88.5%, and 92% of the theoretical density. Molybdenum 
disulphide (MoS2) served as a lubricant for the die, punch, 
and butt during compact preparation. The sintered Al–TiB2 
preforms were then compressed according to the design 
matrix developed by RSM Box–Behnken method. The FD 
achieved during each stage of applied load was measured 
using Archimedes principle. For the design, implementation, 
and simulation of the neural network with feedforward 
backpropagation algorithm, the MATLAB NN toolbox was 
employed.

3 � NN Training and Validation

The densification behavior of sintered aluminum preforms 
has been modeled using a three-layered back propagation 
NN, as detailed in Ref. [9]. Back propagation NN consists 
of several layers, including linear output layers and hidden 
layers that use sigmoid transfer functions. Since the transfer 
function in hidden layers needs to be differentiable, log 

Table 1   Input parameters and their levels

S. no Parameter Low level High level

1 Load (LD) 20 60
2 Aspect ratio (ASPR) 0.50 1.00
3 Initial preform density (IPD) 0.85 0.92

Table 2   Experimental layout for the Box–Behnken design

Std no Run no Factor FD

LD ASPR IPD

1 7 20 0.50 0.8850 2.4820
2 4 60 0.50 0.8850 2.5969
3 10 20 1.00 0.8850 2.4924
4 1 60 1.00 0.8850 2.5945
5 16 20 0.75 0.8500 2.3694
6 3 60 0.75 0.8500 2.5569
7 17 20 0.75 0.9200 2.5283
8 9 60 0.75 0.9200 2.6168
9 6 40 0.50 0.8500 2.4962
10 13 40 1.00 0.8500 2.4612
11 8 40 0.50 0.9200 2.5794
12 5 40 1.00 0.9200 2.5670
13 2 40 0.75 0.8850 2.5210
14 11 40 0.75 0.8850 2.5210
15 12 40 0.75 0.8850 2.5210
16 15 40 0.75 0.8850 2.5210
17 14 40 0.75 0.8850 2.5210
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sigmoid and tan sigmoid functions are commonly utilized. 
In this investigation, the output layer is subjected to the 
‘purelin’ transfer function, which is a linear transfer function, 
while the hidden layers are subjected to the ‘tansig’, or tan 
sigmoid transfer function. Based on a layer’s net input, both 
transfer functions determine its output. Each hidden layer 
and the output layer use artificial neurons that are connected 
by weights that can be adjusted. The network’s training 
function has been selected as ‘trainlm’, a network training 
function that updates weight and bias variables using the 
Levenberg–Marquardt approach.

3.1 � Proposed NN Structure

Throughout the investigation, many arrangements of layers 
and neurons were tested. In the end, two hidden layers, 
an output layer, and an input layer made up a four-layered 
network. Three neurons that indicate the aspect ratio, load, 
and starting preforms density are installed in the input layer. 
Thirty neurons comprise each buried layer. One neuron in 
the output layer represents the response variable, FD (FD). 
Figure 1 displays the network architecture that has been 
demonstrated. The neural network that was formed was 

trained over a number of iterations until the 1e − 5 error 
objective was satisfied given the number of neurons, initial 
weights, and starting biases.

3.2 � NN Training

The multiple data gathered through the above-explained 
experimental work have been used for training the NN 
model. Before training the network, the training data were 
normalized suitably. The training data are fed into the 
proposed network and after several iterations the network 
delivered a converged result in a lesser epoch (Fig. 2). 
The weight values obtained from training the network 
are preserved. Weights from the trained network are 
then incorporated into another network that has a similar 
architecture. It is important to note that the test data used 
for evaluation do not overlap with the data utilized in the 
network being trained.

As shown in Table 6, the network’s output represents the 
predicted values. This shows that the NN model is capable of 
forecasting FD values.

4 � Design of Experiments

Experiment design is a useful analytical technique for 
investigating the influence of process variables on a 
specific variable—an unknown function of these process 
variables. It entails setting up the experiments such that 
pertinent data can be statistically assessed and trustworthy, 
objective results may be obtained. Statistical validation of 

Table 3   Model summary 
statistics

Source Std. dev R2 Adj. R2 Pred. R2 PRESS

Linear 0.019 0.9130 0.8929 0.8203 0.019
2FI 0.015 0.9596 0.9353 0.8021 0.011 Suggested
Quadratic 0.012 0.9835 0.9622 0.7356 0.015

Table 4   Response surface 
model (response: FD (FD)) 
ANOVA table

Source Sum of squares DF Mean square F value Prob > F

Model 0.054000 06 0.008997 039.56  < 0.0001 Significant
A 0.030000 01 0.030000 133.58  < 0.0001
B 0.000194 01 0.000194 000.85 0.3774
C 0.021000 01 0.021000 091.40  < 0.0001
AB 0.000041 01 0.000041 000.18 0.6803
AC 0.002450 01 0.002450 010.77 0.0083
BC 0.000127 01 0.000127 000.56 0.4709
Residual 0.002274 10 0.000227
Cor total 0.056000 16

Table 5   Regression statistics

Std. dev 0.015 R2 0.9596
Mean 2.530 Adj. R2 0.9353
C.V 0.600 Pred. R2 0.8021
PRESS 0.011 Adeq precision 23.271
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the experimental design is required to extract meaningful 
insights from the data [11].

5 � RSM (RSM)

RSM is a set of mathematical and statistical techniques 
that are helpful in modeling and assessing engineering 
issues. The main objective of this methodology is to 
maximize the response surface, which is a function of 
several process variables. Furthermore, RSM quantifies 
the relationship between the generated response surfaces 
and the input parameters that are under control [11, 12]. 
The following is the RSM design process [10].

1.	 Designing a set of tests to capture the relevant answer in 
a sufficient and reliable approach.

2.	 Designing a response surface mathematical model with 
the best fits.

3.	 Determining the ideal combination of experiment 
settings to get a response value that is either maximum 
or lowest.

4.	 Using two- and three-dimensional charts to illustrate the 
direct and interaction impacts of the process parameters.

6 � Mathematical Model of FD

6.1 � Response Equation for FD

Using 17 tests in RSM’s Box–Behnken design, the 
mathematical model for FD was created. The levels that 
correspond with the input parameters chosen for this challenge 
are displayed in Table 1. Table 2 provides the FD for each of 
the 17 assessments. After that, the response equation for the 
FD is as follows:

7 � Confirmation Test

Confirmation experiments were conducted to assess 
the accuracy of the developed model (Table  6). The 
confirmation tests’ test conditions were selected so 
that they would fall inside the previously established 
range of values. The residuals and the percentage error 
were computed following a comparison of the expected 
values and the corresponding experimental values. The 
percentage of errors falls inside allowable bounds. As 
long as the testing is done within the designated range, 
the response equation for the FD generated by RSM can 
therefore be used to precisely predict the FD values for any 

FD = +0.28657 + 0.034852 ∗ (LD) − 0.56556 ∗ (ASPR)

+ 2.38643 ∗ (IPD) −0.00064 ∗ (LD) ∗ (ASPR)

− 0.035357 ∗ (LD) ∗ (IPD) + 0.64571 ∗ (ASPR) ∗ (IPD).

Fig. 3   Plot of residuals with a normal probability for the FD data

Fig. 4   Plot of the FD’s residuals versus the anticipated response
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combination of the load, the aspect ratio, and the initial 
preform density values. Additionally, NN can predict 
density values more accurately than RSM with a tolerable 
error margin.

8 � Results and Discussion

8.1 � Response Surface Graphs and ANOVA

Analysis of variance (ANOVA) was used in the study to 
look at how input parameters affected the FD. According to 
Table 3’s model summary statistics, the 2FI model comes 
highly recommended. Consequently, this model was used 
for additional study. The ANOVA for the response surface 
model with respect to FD is shown in Table 4. One popular 
method for combining the significance test for each model 

coefficient is ANOVA. The model’s “Prob > F” value is 
less than 0.0500, indicating the importance of the model 
terms. This is encouraging since it shows that the response 
is significantly influenced by the terms in the model. The 
overall relevance of the model is shown by its Model F value 
of 39.56. It is highly unlikely that a significant “Model F 
value” could be the product of random noise, with a chance 
of only 0.01%.

The regression statistics are shown in Table  5, and 
the regression model’s adequacy is evaluated using the 
coefficient of determination (R2). When R2 is equal to 1, 
a perfect match is produced; when residuals rise between 
1 and 0, R2 declines. R2 tends to grow as the number of 
variables rises since the residuals get smaller. The coefficient 
of determination adjusted for the degrees of freedom (Adj. 
R2) is utilized to improve the accuracy of evaluating the 
regression model. Adjuvant R2 compares the range of 

Table 6   Partial sample predicted data from the NN and RSM models

Load (LD) Aspect ratio 
(ASPR)

Initial preform 
density (IPD)

FD (FD) Error % FD (FD) Error %

Experimental NN predicted Experimental RSM predicted

25 1.00 0.850 2.3801 2.3763 0.15 2.3801 2.4022 0.92
35 0.75 0.850 2.4602 2.4654 0.21 2.4602 2.4536 0.26
45 0.50 0.850 2.5006 2.5010 0.01 2.5006 2.5082 0.30
35 0.50 0.885 2.5308 2.5323 0.05 2.5308 2.5149 0.62
25 1.00 0.920 2.5179 2.5119 0.07 2.5179 2.5526 1.37
45 0.75 0.920 2.5898 2.5878 0.07 2.5898 2.5864 0.13
65 0.50 0.920 2.6294 2.6249 0.17 2.6294 2.6265 0.11

Fig. 5   Contour plot in ASPR-LD plane at IPD = 0.89 Fig. 6   Contour plot in IPD-LD plane at ASPR = 0.75
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expected values at design points vs. the average prediction 
error in order to evaluate fit and analyze the residual per unit 
degree of freedom. A ratio higher than 4 denotes adequate 
discrimination of the model. The ratio in this instance is 
23.271, which is significantly higher than 4, indicating that 
the model can successfully traverse the response space. 
Additionally, the Adj. R2 is 0.9353 and the actual R2 value 
is 0.9596. The Adj. R2 value and the expected R2 value of 
0.8021 are fairly aligned. In this case, the model’s efficacy 
is demonstrated by the high and nearly 1 R2 value, which 
is regarded as desirable [13]. The residuals analysis has 
been utilized to further evaluate the model’s suitability 

[11]. Plots of the residuals vs. predicted response and 
normal probability plots of the residuals, which show the 
variations between the projected and observed responses, 
are used to analyze the remaining data. In a suitable model, 
the residuals’ normal probability plot points should form a 
straight line. However, the plots of the residuals against the 
expected response should display an unorganized pattern 
without any obvious trend [13]. Figures 3 and 4 display 
the residuals’ normal probability plots as well as the plots 
showing the residuals in relation to the anticipated responses 
for surface roughness. According to these plots, the residuals 
often follow a straight line, pointing to a normal distribution 
of errors. Furthermore, Fig.  4 demonstrates that there 
is no remarkable structure or trend in the residuals. This 
finding suggests that the suggested model is sufficient and 
that neither the independence nor the constant variance 
assumptions have been broken [13]. Figures 8 and 9 display 
the 3D surface graphs for the FD. Because the model is 
sufficient, these 3D surface plots can be used to estimate 
the FD values for any suitable combination of the input 
parameters, such as the load, aspect ratio, and beginning 
preform density value.

A Box–Behnken design was conducted to explore 
the densification characteristics of sintered aluminum 
preforms.

Table  6 shows that RSM and NN are both practical 
methods for estimating the ultimate density of sintered 
aluminum preforms. When it comes to forecasting the FD 
with only a few percent error, NN performs better than 
RSM, according to a comparison study comparing the two 
algorithms.

In Fig. 5, the contour plot of FD in the ASPR-LD plane 
at IPD = 0.89 suggests that aspect ratio minimally affects 
densification. Figure 6, illustrates the contour plot of FD in 

Fig. 7   Contour plot in IPD-ASPR plane at LD = 40

Fig. 8   3D surface graph for 
the FD (FD) at IPD = 0.89, as 
ASPR and LD varies
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the IPD-LD plane at ASPR = 0.75, indicating that the FD 
increases with both applied load and initial preform density.

Figure 7, a contour plot of FD in the IPD-ASPR plane 
at LD = 40, demonstrates that aspect ratio has minimal 
impact on densification. While aspect ratio has little effect 
on densification for preforms with lower initial density, it 
has almost no effect on Preforms with higher initial density.

Lastly, Fig. 8 presents a 3D surface graph for FD at 
IPD = 0.89, and Fig. 9 displays a 3D surface graph for 
FD at ASPR = 0.75. These surface plots, validated by 
the model, can be utilized to navigate and determine 
the desired FD for various load, aspect ratio, and initial 
preform density combinations.

Gangadhara Rao Ponugoti et  al. [17] investigated 
tribological property indicators, for the wear rate and 
coefficient of friction, were recorded and used as the basis 
for developing regression models. These techniques were 
then checked for adequacy using ANOVA and subsequently 
utilized for optimization to predict the values of the optimal 
control variables. In this paper, authors investigated FD and 
behavior of Al–TiB2 preforms by applying NN and RSM 
models and achieved closer values compared to experimental 
results.

9 � Conclusion

NN and RSM are used in this study to explain sintered 
Al–TiB2 preforms density. Using these methods, the 

ultimate density that sintered Al–TiB2 preforms achieve 
is calculated for a range of input factors, including load, 
aspect ratio, and initial preform density values. It has been 
found that the load and the initial preform density values are 
significant parameters, while the aspect ratio is relatively 
insignificant. Though the design and development of NN 
is time consuming, it provides accurate results compared 
with RSM.
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